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Abstract
In this paper, we have investigated the metal–insulator transition (MIT) in a two-dimensional
half-filled extended Hubbard model on an isotropic triangular lattice with a real space block
renormalization group technique. It has been found that the MIT can be driven nontrivially by
either the on-site interaction U or the nearest-neighbor one V , but with different critical
exponents. Depending upon the values of V , the system could have one, two or three MIT
critical points. Moreover, for the metallic regime, we have also studied the competition effect
from the spin density wave and charge density wave phases by using a mean-field theory based
upon Hartree–Fock approximations. Finally, the single-site entanglement is also calculated and
its first derivative with respect to U shows a jump along the critical line of the MIT.

1. Introduction

The metal–insulator transition (MIT) is one of the central
problems in condensed matter physics. Ever since the
experimental discovery of metal states in 2D electronic
systems [1], the influence of the interplay among disorders,
electron interactions and geometric structures upon the MIT
has been a subject of intense studies [2]. In particular, the
competition between interactions and geometric frustrations
can result in a wide range of exotic phases, which has attracted
a lot of attention [3]. The triangular lattice is one of the prime
examples having a frustration structure and can be found in a
lot of materials, such as NiGa2S4 and organic compounds of
κ-(BEDT-TTF)2Cu2(CN)3 [4]. The phase transitions in those
materials are closely connected to the electronic correlations
and the geometric frustrations.

The Hubbard model (HM) [5] is the minimal model having
electron interactions. The early results show that the ground
state of a half-filled HM on a square lattice is a Mott insulator
with Néel order for all positive values of U/t . In comparison,
a frustrated triangular lattice has been shown to support a
nontrivial MIT at finite interactions by various numerical
calculations, for example, exact diagonalizations [6], mean-
field resonating-valence-bond calculations [7] and the real

space renormalization group (RSRG) method [8]. This
clearly demonstrates the critical role played by the combined
effects of interactions and geometric frustrations in the MIT.
But the interactions in the normal HM only involve on-
site interactions. So what will happen if nearest-neighbor
interactions are included? The answer to this question will
not only have fundamental theoretical interest, but also have
great experimental relevance due to the discovery of many
new materials, such as triangular lattice antiferromagnets of the
CuCrO2 family and transition-metal oxide materials Nax CoO2

and Na1−x TiO2 [9, 10]. These materials are characterized by
rich kinds of charge and spin orders, which are believed to be
related to the long-range interactions. In this paper, we will
try to answer the above question through use of the extended
Hubbard model (EHM) on a triangular lattice, which includes
both nearest-neighbor interactions and a frustration structure.

The 2D EHM is a typical many-body model. It is almost
impossible to obtain an analytical solution. We have to resort
to approximations and numerical calculations, such as Monte
Carlo simulation [11], exact diagonalization [12], renormaliza-
tion group (RG) techniques [6, 13] and self-consistent mean-
field approximation [14, 15]. Tsai, Marston [16] and Hon-
erkamp [17] investigated the superconducting instability on the
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2D triangular lattice by RG techniques. Recently, Davoudi has
studied the EHM by a two-particle self-consistent approach for
the density and the interaction-dependent crossover diagram
for spin density wave (SDW) and charge density wave (CDW)
instabilities of the normal state. In our work, we will make
use of the real space block renormalization group (RSBRG)
method for the solution. This method has already been
successfully applied in the study of the MIT in the HM on
a triangular lattice [18], which gives us great confidence in
extending it to the EHM. The advantages of the RSBRG are
that it can directly give the charge gap, the order parameter
of the MIT, and also the single-site entanglement, which has
been shown to represent some inherent many-body correlations
and can be regarded as a general reference order parameter for
quantum phase transitions [19], independent of the underlying
driving mechanism. Besides the MIT, a self-consistent
Hartree–Fock approximation (HFA) is also used to study the
CDW and SDW phase transitions in the EHM.

This paper is organized as follows. In section 2, the
Hamiltonian and the methods of the RSBRG and the HFA
are introduced. Section 3 presents the detailed numerical
results and the discussion. Finally, a brief summary is given
in section 4.

2. The model and methods

The extended Hubbard model is defined by the Hamiltonian

H = −t
∑

〈i, j〉,σ
[c†

iσ c jσ + h.c.] + U
∑

i

ni↑ni↓

+ V
∑

〈i, j〉
ni n j − μ

∑

i

ni (1)

where t is the nearest-neighbor hopping term, U the
local repulsive interaction, V the nearest-neighbor Coulomb
interaction and μ the chemical potential. c†

iσ (ciσ ) creates
(annihilates) an electron with spin σ in a Wannier orbital
located at site i . niσ (=c†

iσ ciσ ) is the number operator and
ni = (ni↑ +ni↓). 〈 〉 denotes the nearest-neighbor pair and H.c.
means Hermitian conjugate. For a half-filled system, based
upon particle–hole symmetry, equation (1) can be rewritten as

H = −t
∑

〈i, j〉,σ
[c†

iσ c jσ + h.c.] + U
∑

i

( 1
2 − ni↑)( 1

2 − ni↓)

+ V
∑

〈i, j〉
(1 − ni )(1 − n j )+ k

∑

i

Ii , (2)

where μ = U/2 + 6V , k = −(U/4 + 6V ) and Ii is the unit
operator.

2.1. The block renormalization group

For a many-body Hamiltonian, due to the huge size of
the Hilbert space, it is usually very hard to obtain its
eigenvalues and eigenvectors. But when the microscopic
spatial fluctuations are not very important for the physical
results, we can follow Kadanoff’s idea [20] of using the block
renormalization group (BRG) method by dividing the lattice
into blocks. Each block is then taken as an effective site of a
new lattice. The hopping terms on the new lattice are evaluated
by averaging over the interblock interactions. Repeating this

Figure 1. Schematic diagram for the procedure of the real space
block renormalization group method applied in the EHM. (a) shows
the original triangular lattice with parameters {t,U, V } and (b)
presents the new lattice with renormalized parameters {t ′,U ′, V ′}
after mapping each hexagonal block into one effective site.

procedure, we can get the so-called fixed point in the parameter
space.

Mathematically, the procedure starts by decomposing the
Hamiltonian into two parts:

H =
∑

b

Hb +
∑

〈b,b′〉
Hb,b′, (3)

where b = 1, 2, . . . , N/ns is the block label with N and
ns the size of the lattice and the block, respectively. Hb

represents the block Hamiltonian and Hb,b′ the interblock
interactions. Hb can be solved numerically with eigenvalues
λb,i and eigenvectors |ϕb,i〉, from which we can build a
complete set of new bases of the whole system, |�〉 =
|ϕ1,i1〉|ϕ2,i2〉 . . . |ϕN/ns ,iN/ns 〉. In this new set of basis, H can
be formally rewritten as

H =
∑

�,� ′
|�〉〈�|H |� ′〉〈� ′|. (4)

Until now, everything has been exact and the new Hamiltonian
is spanned in a Hilbert space of the same size as the original
one. The next important step is to truncate the Hilbert space
in a proper way. In the BRG method, the low-lying energy
states of the block are often taken. Considering the fact that
the Hilbert space dimension for each site is 4, we will keep
only four block states in order to guarantee a similar structure
connecting the renormalized and the old Hamiltonians.

On the basis of the above general rule, in our work, we
divide the triangular lattice into blocks of seven sites, as shown
in figure 1. The block Hamiltonian is

Hb = −t
∑

〈i (b), j (b)〉,σ
[c†

i (b)σ c j (b)σ + h.c.]

+ U
∑

i (b)

( 1
2 − ni (b)↑)( 1

2 − ni (b)↓)

+ V
∑

〈i (b), j (b)〉
(1 − ni (b) )(1 − n j (b) )+ k

∑

i (b)

I (b)i , (5)

and the interblock interaction is

Hb,b′ = −t
∑

〈i (b) , j (b′)〉,σ
[c†

i (b)σ c j (b′)σ + h.c.]

+ V
∑

〈i (b), j (b′)〉
(1 − ni (b) )(1 − n j (b′) ), (6)
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where i (b), j (b) are the labels of sites in the block b
and 〈i (b), j (b

′)〉 denotes the interacting boundary sites, from
neighboring blocks b and b′.

In the EHM, the total particle number and spin are good
quantum numbers; hence, the Hilbert space of each block can
be separated into different subspaces according to ns and Sz .
For a half-filled case, each block will have seven electrons
on average. Due to fluctuations of the particle number on
each block, we can divide the block Hilbert space into four
subspaces, namely, ns = 6 with three spins up and three spins
down, ns = 7 with four spins up and three spins down, ns = 7
with three spins up and four spins down and ns = 8 with four
spins up and four spins down. Accordingly, the ground state
for each subspace is expressed as

|φb1〉 ≡ |0〉′b, (7)

|φb2〉 ≡ c†
b↑|0〉′b = |↑〉′b, (8)

|φb3〉 ≡ c†
b↓|0〉′b = |↓〉′b, (9)

|φb4〉 ≡ c†
b↑↓|0〉′b = |↑↓〉′b, (10)

where c†
bσ (cb′σ ) is the creation (annihilation) operator of the

block state |σ 〉′b. The corresponding energies are λi (i =
1, 2, 3, 4). The above four states will be retained for each
block, which could be directly mapped to the four states on
each site in the original lattice, i.e., |0〉, c†

i↑|0〉 ≡ |↑〉, c†
i↓|0〉 ≡

|↓〉, c†
i↑c†

i↓|0〉 ≡ |↑↓〉. In the notation introduced above,
the renormalized block Hamiltonian Hb can be approximately
written as

Hb = |0〉′bλ1〈0|′b + |↑〉′bλ2〈↑|′b + |↓〉′b
× λ3〈↓|′b + |↑↓〉′bλ4〈↑↓|′

= λ1 − (λ1 − λ2)n
′
b↑ − (λ1 − λ3)n

′
b↓

+ (λ1 − λ2 − λ3 + λ4)n
′
b↑n′

b↓, (11)

by assuming the four states in equations (7)–(10) to form
a complete set of states in the block Hilbert space. The
particle–hole symmetry leads to λ2 = λ3. The new intersite
Hamiltonian can be obtained as

H ′
b = (λ1 + λ4 − 2λ2)

∑

b

n′
b↑n′

b↓ − (λ1 − λ2)

×
∑

b

(n′
b↑ + n′

b↓)+ λ1

∑

b

Ib. (12)

Comparing with equation (5), we can obtain the renormalized
parameters U ′, μ′, and k ′ as

U ′ = λ1 + λ4 − 2λ2, (13)

μ′ = λ1 − λ2, (14)

k ′ = λ1. (15)

It should be mentioned that λ1 and λ2 are functions of the old
parameters t , U , V , K .

By using similar procedures, we can get the renormalized
intersite part Hb,b′ ,

Hb,b′ = −t
∑

〈i (b) , j (b′)〉,σ,i1,i ′
1,i2,i ′

2

[|ψbi1〉〈ψbi1 |c†
i (b)σ |ψbi ′

1
〉〈ψbi ′

1
|

× |ψb′i2〉〈ψb′ i2 |c j (b′)σ |ψb′i ′
2
〉〈ψb′ i ′

2
| + h.c.]

+ V
∑

〈i (b), j (b′)〉,σ,i1,i ′
1,i2,i ′

2

[|ψbi1〉〈ψbi1 |(1 − n′
i (b) )|ψbi ′

1
〉〈ψbi ′

1
|

× |ψb′i2〉〈ψb′ i2 |(1 − n′
j (b′) )|ψb′i ′

2
〉〈ψb′ i ′

2
|] (16)

= −t
∑

〈i (b), j (b′)〉,σ
{〈σ |′bc†

i (b)σ |0〉′b + [〈−σ, σ |′bc†
i (b)σ | − σ 〉′b

− 〈σ |′bc†
i (b)σ |0〉′b]n′

b−σ }c′†
i (b)σ {〈0|′b′c j (b′)σ |σ 〉′b′

+ [〈−σ |′b′ c j (b′)σ | − σ, σ 〉′b′ − 〈0|′b′c j (b′)σ |σ 〉′b′ ]n′
b′−σ }c′

j (b′)σ

+ h.c.+ V
∑

〈i (b) , j (b′)〉,σ
(1 − 〈0|′bni (b) |0〉′b)

× (1 − 〈0|′b′ n j (b′) |0〉′b′). (17)

To keep Hb,b′ of the form

Hb,b′ = −t ′ ∑

〈i (b) , j (b′)〉,σ
[c′†

i (b)σ c′
j (b′)σ + h.c.]

+ V ′ ∑

〈i (b), j (b′)〉
(1 − n′

i (b) )(1 − n′
j (b′) ), (18)

we set
〈−σ, σ |′bc†

i (b)σ | − σ 〉′b = 〈σ |′bc†
i (b)σ |0〉′b, (19)

〈−σ |′b′ c j (b′)σ | − σ, σ 〉′b′ = 〈0|′b′ c j (b′)σ |σ 〉′b′ . (20)

Hence,

t ′ = νζ 2t, ζ = 〈−σ, σ |′bc†
i (b)σ |b − σ 〉′b = 〈σ |′bc′†

i(b)σ
|0〉′b,
(21)

V ′ = ν(1 − 〈0|′ni |0〉′)2V , (22)

where ν represents the number of couplings between
neighboring blocks, which is 3 in our case. Equations (13)–
(15) and equations (21) and (22) form a set of complete RG
flow equations in the parameter space.

2.2. The Hartree–Fock approximation

The EHM can have CDW and SDW phases. But it is difficult
to apply the BRG method to investigate these phases since a
bigger block is needed in order to support the corresponding
low-energy waves. In order to solve this problem, we will try
to make use of the Hartree–Fock approximations, which can
reduce the many-body problem into a set of single-body ones
by decoupling interactions through mean fields. For the EHM,
the on-site interactions can be approximated as

HU � U
∑

i

[〈ni↑〉ni↓ + ni↑〈ni↓〉 − 〈ni↑〉〈ni↓〉

− 〈c†
i↓ci↑〉c†

i↓ci↑ − 〈c†
i↑ci↓〉c†

i↑ci↓ + 〈c†
i↑ci↓〉〈c†

i↓ci↑〉],
(23)

and the nearest-neighbor interactions as

HV � V
∑

〈i, j〉
[〈ni 〉n j + ni 〈n j 〉 − 〈ni 〉〈n j 〉 − 〈c†

i↑c j↑〉c†
j↑ci↑

− 〈c†
j↑ci↑〉c†

i↑c j↑ + 〈c†
i↑c j↑〉〈c†

j↑ci↑〉

3
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Figure 2. Variations of the charge gap �g/t against the on-site
interactions U/t with fixed values of V/t .

− 〈c†
i↑c j↓〉c†

j↓ci↑ − 〈c†
j↓ci↑〉c†

i↑c j↓ + 〈c†
i↑c j↓〉〈c†

j↓ci↑〉
− 〈c†

i↓c j↑〉c†
j↑ci↓ − 〈c†

j↑ci↓〉c†
i↓c j↑ + 〈c†

i↓c j↑〉〈c†
j↑ci↓〉

− 〈c†
i↓c j↓〉c†

j↓ci↓ − 〈c†
j↓ci↓〉c†

i↓c j↓ + 〈c†
i↓c j↓〉〈c†

j↓ci↓〉],
(24)

where the minus signs follow from fermionic statistics and
〈· · ·〉 denotes the average over the mean-field wavefunctions.
Following the general steps of mean-field theory, we firstly
initialize the mean-field parameters 〈· · ·〉 in equations (23)
and (24). Next, the initialized Hamiltonian is solved
numerically to get all of its eigenvalues εl(i, σ ) and
eigenvectors φl(i, σ ). For an n × n cluster, we need to
diagonalize a 2n2 × 2n2 matrix. Then, the eigenvectors
obtained are used to acquire the charge density and
magnetization component,

〈ni,σ 〉 =
∑

|εl<EF|
|φl(i, σ )|2, (25)

〈c†
iσ c jσ ′ 〉 =

∑

|εl<EF|
|φl(i, σ )φl( j, σ ′)|, (26)

where the lowest n2 eigenvectors are filled for the half-
filled case with EF the corresponding Fermi energy. Finally,
equations (25) and (26) are fed back into equations (23)
and (24) to get the new Hamiltonian. Then we iterate the above
three steps until convergence is achieved. It might be noted that
only a fraction of the mean-field parameters in equations (23)
and (24) will be updated for each iteration. This relaxation
technique is necessary in order to guarantee convergence,
which depends sensitively on the initial conditions.

3. Results and discussion

3.1. The MIT

The charge gap �g is an order parameter used to determine
whether a system is in a metallic or a Mott insulating state,
which is defined as

�g = E(Ne − 1)+ E(Ne + 1)− 2E(Ne), (27)

Figure 3. The same as figure 2 but for the nearest-neighbor
interactions V/t with fixed values of U/t .

Figure 4. The MIT phase diagram of the EHM on a triangular
lattice.

where E(Ne) denotes the lowest energy for the Ne electron
system. If �g = 0, the systems exhibits metallic behavior.
Otherwise it is insulating. Lieb and Mattis [21] have proved
that, for an electronic system with arbitrary symmetrical
potential, the absolute ground-state energy lies within the S =
|Sz | subspace, where, for a given electron number N , |Sz | takes
the lowest possible value. Hence, for a seven-site block, the
ground state of seven electrons will lie in the subspace with
four spins up and three spins down or vice versa, which means
E(7) = λ2. Similarly, E(6) = λ1 and E(8) = λ4. The
corresponding charge gap is then equal to λ1 + λ4 − 2λ2.
Comparing with equation (13), equation (27) can be expressed
as

�g = lim
n→∞ U (n), (28)

where n denotes the order of the iterations in equation (13).
In our calculations, all the energy will be scaled in units

of t . In figure 2, we plot the order parameter �g as a
function of U/t for different values of V/t . It is obvious
that as V = 0, the EHM reduces to the HM and the MIT
happens at a finite on-site interaction, i.e. U/t = 12.5, which
is consistent with the exact-diagonalization result for a 12-
site lattice with U/t = 12.07 [6]. As V/t is larger than
zero, it is interesting to note that the Mott insulator near the

4
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transition point becomes unstabilized against the metallic state,
namely, we need higher on-site interaction in order to observe
the MIT. In other words, the nearest-neighbor interactions are
actually reducing the effective on-site interactions. This can
be understood by realizing that the occupation of two electrons
on one site is more favored by V/t than the distribution of
two electrons on two sites favored by U/t . This phenomenon
will continue until V/t = 4.2. Then there is a striking effect,
namely, in the metallic part of the parameter space of U/t ,
we can observe an island of Mott insulating region. Hence
there are now three MIT critical points. The first is from a
metallic to an insulating state and the second is the re-entrance
of the insulator to the metal. Finally, the system goes to
insulator again. This phenomenon might be related to the
CDW instabilities since the metallic state originates from the
high spin degeneracy in the frustrated triangular lattice and
the CDW tends to lift the degeneracy, which could then drive
the system into an insulator in the metallic region. Generally
speaking, while V/t is increased, the region of Mott phase
will expand until the left MIT critical point touches the axis
with U/t = 0, which happens around V/t = 4.4. If V/t is
further increased beyond 4.4, there are two MIT critical points
left and the insulating region keeps expanding until finally the
right MIT critical point leaves the U/t axis around V/t = 8.4
and the system is insulating for all values of U/t .

Figure 3 presents the results for the charge gap against
V/t for different U/t values. A phenomenon similar to that in
figure 2 is seen, i.e., the MIT emerges at a finite value of V/t
when U/t = 0. And when U/t is large enough, the metallic
phase disappears. The difference in behavior from figure 2
is that, as U/t is increased, the charge gap opens not in the
middle part along the V/t axis, but directly from the border at
V/t = 0. Hence we can only observe two critical points before
the whole system transforms into an insulating state.

Collecting all the data in figures 2 and 3, we present the
full MIT phase diagram in figure 4, from which we can clearly
see the general features of the MIT in the EHM. When both
U/t and V/t are small, the system is in a metallic phase
due to the frustration effect. In the case with U/t → ∞
or V/t → ∞, it is in a Mott insulating state due to the
strong electron repulsions and the resulting localized states.
The richest phase transitions happen when U/t and V/t are
competing with each other, which has been explained above.
Moreover, from figure 4, we can notice another interesting
effect. In the region of 4.2 � V/t � 4.4, a small on-
site interaction will firstly lower the critical value of V/t and
then increase it. If we renormalize U/t into V/t , we can
say that the on-site interaction tends to first increase and then
decrease the effective nearest-neighboring interactions. This is
in direct comparison with what happens along the U/t axis,
in which the nearest-neighbor interactions can only decrease
the effective U . These effects have demonstrated clearly the
subtlety of the competition effect from on-site and nearest-
neighbor interactions upon the MIT.

3.2. Finite size scaling analysis

In order to understand the universality class of the MIT
happening in the EHM, in this section, we introduce the finite

size scaling analysis. In the RG calculations, if the iteration is
stopped at different step, we can get the size dependence of the
charge gap. As an example, in figure 10(a), we present the size
dependence of �g upon V/t at U/t = 0. In figure 10(b), �g

is scaled with respect to N . The crossing point corresponds to
the critical value (V/t)c = 4.95. Moreover, in figure 10(c),
all the data can collapse to one curve once a rescaling of V/t
with N is used. The above finite size scaling can be compactly
expressed as

�g N0.405 = f [q N0.63], (29)

where f (x) is a universal function independent of the system
size and q = V/t−(V/t)c. By using N = L2 for a 2D system,
the above equation can be changed to

�g = L−0.81 f [q L1.26]. (30)

According to the one-parameter scaling theory, we have

�g = q y� f [L/ξ ], (31)

in which ξ = q−ν is the correlation length with ν being the
corresponding critical exponent and L denotes the system size.
Comparing with equation (29), it can be obtained that

y� = 0.643, ν = 0.794. (32)

There is a relationship between y� and the dynamic critical
exponent z, namely, y� = zν. Hence z = 0.81. Through
similar procedures, the critical exponents at other critical
points in the MIT phase diagram can also be obtained. After
intensive calculations, we find that the MIT induced by V has
the same critical exponent ν = 0.794 and z = 0.81. For
the phase transition induced by U , ν = 1 and z = 0.81, the
same as early results from the real space method [8]. Different
critical exponents imply different underlying mechanisms of
the MIT. In our model, they are just the on-site and nearest-
neighbor interactions.

3.3. The SDW and CDW

The competition of the short- and long-range interactions not
only emerges in the MIT, but also happens in the SDW and
CDW. To characterize the SDW and CDW phases, we calculate
the spin and the charge structure factors in the momentum
space by using

S(k) = 1

N2

∑

i j

〈ni↑ − ni↓〉〈n j↑ − n j↓〉eik(ri−rj), (33)

and

C(k) = 1

N2

∑

i j

〈ni 〉〈n j 〉eik(ri−rj), (34)

respectively, where the average values of 〈· · ·〉 are given by
equations (25) and (26). A 12 × 12 system with periodic
boundary conditions is used in the following calculations.

Some examples of SDW order (SO) are presented in
figures 5(a)–(c) with V/t = 0. It is easy to see that when
U/t = 3, S(k) is zero, independently of k. When U/t
is increased to 7, there emerge some peaks, indicating the

5
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Figure 5. Spin structure factor S(k) in the momentum space for
different U/t values with V/t = 0 (U/t = 3 (a), U/t = 7 (b),
U/t = 11 (c)).

appearance of SO. Hence there exists a critical value of U/t
for SO to emerge. As U/t is increased to 11, more peaks
appear. By careful observations, we find that the highest
peaks always sit upon some fixed points, namely, (±4π/3, 0)
and (±2π/3,±2π/

√
3), which exactly correspond to the

symmetry axes of the triangular lattice. Similar examples used
to demonstrate the features of the CDW order (CO) are given
in figure 6. The same phenomenon is observed. Thus, for a 2D
frustrated structure, U/t and V/t tend to induce the SO and
CO, respectively, just as for 1D and 2D non-frustrated cases.
To find the details of how the SDW and CDW compete with
each other, the variations of the maximum values of S(k) and
C(k) at the point (±4π/3, 0) against U/t for different V/t
values are given in figures 7(a)–(c). Figure 7(a) is for V/t = 0,
in which C(k) remains zero for all values of U/t , meaning
nonexistence of CO in this parameter region. But for SO, there
is a phase transition at finite critical on-site interactions, i.e.,
U/t = 6. The case with V/t = 1.5 is shown in figure 7(b), in
which the competition between SO and CO is obvious. When
0 � U/t � 4, the CO exists without SO. Then as U/t � 4,
the CO becomes unstable and disappears. As U/t is further

Figure 6. The same as figure 5, but for the charge structure factor
C(k) with different V/t values and fixed U/t = 0 (V/t = 0.6 (a),
V/t = 1.2 (b), V/t = 3.0 (c)).

increased until U/t = 6.5, the SO appears. In the region
with 0 � U/t � 4, there seems to be a crossover regime
in which neither SO nor CO exists. It is also interesting to
note that when V/t is large enough, for example V/t = 3
as shown in figure 7(c), the crossover regime disappears and
the phase transition happens directly, between SO and CO.
Similarly, when we keep U/t fixed and study the dependence
of the CO and SO upon V/t , the same results are obtained
except that the role of CO and SO needs to be exchanged.
This is shown in figures 8(a)–(c). One thing that needs to be
mentioned is that, at U/t = 5, CO emerges at V/t = 1.8,
which is in agreement with the work of Davoudi [22] using
the extended two-particle self-consistent approach, which in
some way shows the reliability of the results presented here.
Figure 9 summarizes the phase diagram of SO and CO in the
metallic region. Just as in [23], within the framework of the
slave-boson technique, the coexistence of CO and SO has not
been found in our work either. Moreover, we can clearly see
from figure 9 that an instability of SO driven by V/t exists

6
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Figure 7. Variation of the spin (solid line) and charge (dotted line)
structure factors against U/t for different V/t values.

before the appearance of CO when U/t is between 5 and 8.
This phenomenon is also consistent with those given in [23].
But comparing with the 1D case [23], the 2D frustrated system
seems to be much more complex since a region without CO
and SO can be observed when the repulsions V/t and U/t are
not strong enough. Unfortunately, we cannot give the phase
diagram in the full parameter space due to the convergence
problem of the HFA, which might imply that new mean-field
order parameters are needed.

3.4. Entanglement

Recently much work has shown that entanglement can be used
to characterize a quantum phase transition [19]. For spin
models, the entanglement of two neighboring sites displays
a sharp peak at the critical point where the quantum phase
transition takes place [24, 25]. For the fermionic systems,
Gu and Deng [26] have demonstrated that entanglement can
be used as a unique quantity for describing quantum phase
transitions, and Daniel [27] has put forward a single-site
entanglement to be used as a reliable mark of the MIT in the 1D
HM. In order to decide whether the single-site entanglement
can give consistent results in identifying the MIT in our model,
we use the BRG method to carry out the investigations. The
details of the procedure can be found in [28]
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Figure 8. The same as figure 7, but for fixed U/t while tuning V/t .

(This figure is in colour only in the electronic version)

For fermionic systems, von Neuman entropy is usually
used to measure the entanglement, which is defined as

E j = − Tr[ρ j ln2 ρ j ], ρ j = Tr j |�〉〈�|, (35)

where Tr j denotes the trace over all the unwanted freedoms and
� is the antisymmetric wavefunction of the system studied.

For the single-site entanglement, only one site freedom
will be kept and all the others need to be traced out. Generally,
the local density matrix ρi for the i th site can be written as

ρi = zi |0〉〈0| + u†
i |↑〉〈↑| + u−

i |↓〉〈↓| +wi |↑↓〉〈↑↓|, (36)

where

wi = 〈ni↑ni↓〉, (37)

u†
i = 〈ni↑〉 −wi , (38)

u−
i = 〈ni↓〉 − wi , (39)

zi = 1 − 〈ni↑〉 − 〈ni↓〉 +wi , (40)

from which we can get

Ei
v = −u†

i log2 u†
i −u−

i log2 u−
i −wi log2wi −zi log2 zi . (41)

Normally, the size effect cannot be neglected and Ei
v depends

on i . Hence without loss of generality, the average value of

7
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Figure 9. The phase diagram for SDW and CDW phases in the
metallic regime of the EHM, as shown in figure 4.

Figure 10. The finite size scaling of the charge gap against V/t .

the von Neumann entropy [29] will be used:

Ee
v = 1

N

∑

i

(−u†
i log2 u†

i − u−
i log2 u−

i − wi log2 wi

− zi log2 zi ). (42)

With the HFA, due to the size effect, we need to calculate
the average single-site entanglement. The results are given in
figure 11, from which we can clearly observe the jump of the
entanglement along the critical line of the MIT. This implies
that the metal and insulating phases have quite different kinds
of many-body correlations.

In the BRG method, the entanglement can also be
calculated [30]. And the size effect is not a serious problem.
So the entanglement between the central site and all the
others is just what we want. As a lot of work has shown
before, the derivative of the entanglement with respect to the
order parameter is sometimes more suitable for revealing the
quantum phase transitions. Hence in figure 12, the variations of
the entanglement derivative with respect to the order parameter
U/t are presented. Comparing with the phase diagram in
figure 4, it can be found that the extremum of the entanglement
derivative also follows well the critical line of the MIT. And
specifically, the phase border line can be separated into two

Figure 11. Variation of the single-site entanglement in the parameter
space U/t, V/t , obtained from the HFA.

Figure 12. The same as figure 11, but for the derivative of the
entanglement obtained from the BRG.

sections. One section corresponds to the maximum value and
the second one to the minimum value.

4. Summary

In this paper, by using the BRG method and a mean-field
technique based upon the HFA, we have investigated in detail
the MIT in the half-filled extended Hubbard model on a
triangular lattice. The main results that we have obtained can
be summarized as follows.

(1) The MIT can be driven by either the finite on-site
interactions or the nearest-neighbor ones, but with
different critical exponents ν. For the MIT induced by
U/t while keeping V/t fixed, we have ν = 1, z = 0.81.
But if the MIT is induced by V/t with U/t fixed, ν =
0.794, z = 0.81.

(2) When both U/t and V/t are small, the system shows
metallic behavior due to the frustrated lattice structure.
And if the electron repulsions are strong enough, the
system will be in an insulating state due to the interaction-
induced localizations.

8
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(3) For V/t � 4.2, there is one critical point for the MIT with
respect to U/t . When 4.2 � V/t � 4.4 or V/t � 8.4,
there are three and two critical points, respectively. If
V/t � 8.4, no MIT exists.

(4) In the metallic regime, the SDW and CDW phases have
been studied using mean-field theory based upon Hartree–
Fock approximations. According to the structure factors
in the momentum space, we can divide the metallic regime
in the phase diagram into different parts and find that the
nearest-neighbor interaction V/t can induce CO, which
then leads to complicated phase structure when it is
competing with the SO induced by U/t .

(5) The single-site entanglement has also been calculated.
Its first derivative with respect to U demonstrates an
extremum along the MIT critical line.

Acknowledgment

This work is supported by the National Basic Research Pro-
gram of China (973 program) under Grant No. 2006CB921104.

References

[1] Kravchenko S V, Kravchenko G V, Furneaux J E, Pudalov V M
and D’Iorio M 1994 Possible metal–insulator transition at
b = 0 in two dimensions Phys. Rev. B 50 8039–42

[2] Abrahams E, Kravchenko S V and Sarachik M P 2001 Metallic
behavior and related phenomena in two dimensions Rev.
Mod. Phys. 73 251–66

[3] Jeckelmann E 2002 Ground-state phase diagram of a half-filled
one-dimensional extended Hubbard model Phys. Rev. Lett.
89 236401

[4] Merino J, Powell B J and McKenzie R H 2006
Ferromagnetism, paramagnetism, and a Curie–Weiss metal
in an electron-doped Hubbard model on a triangular lattice
Phys. Rev. B 73 235107

[5] Mott N F 1974 Metal Insulator Transitions (London: Taylor
and Francis)

[6] Capone M, Capriotti L, Becca F and Caprara S 2001 Mott
metal–insulator transition in the half-filled Hubbard model
on the triangular lattice Phys. Rev. B 63 085104

[7] Powell B J and McKenzie R H 2005 Half-filled layered organic
superconductors and the resonating-valence-bond theory of
the Hubbard–Heisenberg model Phys. Rev. Lett. 94 047004

[8] Wang J X and Kais S 2002 Finite-size scaling for Mott
metal–insulator transition on a half filled nonpartite lattice
Phys. Rev. B 66 081101

[9] Takada K, Sakurai H, Takayama-Muromachi E, Izumi F,
Dilanian R A and Sasaki T 2003 Superconductivity in
two-dimensional CoO2 layers Nature 422 53–5

[10] Foo M L, Wang Y, Watauchi S, Zandbergen H W, He T,
Cava R J and Ong N P 2004 Charge ordering,
commensurability, and metallicity in the phase diagram of
the layered Nax CoO2 Phys. Rev. Lett. 92 247001

[11] White S R, Scalapino D J, Sugar R L, Loh E Y, Gubernatis J E
and Scalettar R T 1989 Numerical study of the
two-dimensional Hubbard model Phys. Rev. B 40 506–16
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